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Abstract

The practical applicability, performance, and robustness of three-way decomposition (TWD) for the extraction of relaxation

parameters are demonstrated for a large protein with 370 residues, the maltose binding protein. An ordinary set of seven relaxation-

modulated 15N HSQC spectra, recorded at another site, is systematically analyzed. For all 341 assigned backbone amide groups,

including 21 pairs and one group of three overlapped peaks, T1 decay values were determined. On isolated peaks, TWD extracts T1
values with systematically lower error bounds compared to conventional tools, although for these simple cases the improvements

remain limited. However, in the presence of spectral artifacts, the decrease in errors can become significant, demonstrating the

higher robustness of TWD. For about half of the peaks in overlapped regions, the decomposition allowed separation of the signals,

yielding significantly different T1 values between overlapping signals. For the rest, similarity of the decay times for the two or three

overlapping signals could be confirmed within usually low error bounds. The use of TWD thus leads to a significant increase in the

number of accessible relaxation probes in large proteins. With a newly implemented graphical user interface, the application of

TWD requires merely a peak list, and thus no additional effort compared to conventional approaches is needed.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Currently we witness an increasing interest in exper-

imental observation of internal dynamics of proteins by

NMR [1,2]. Novel approaches are being developed that

increase the range of observable motions [3–6]. Mea-
surements at various temperatures and magnetic fields

allow thermodynamic characterizations of proteins by

free energies, enthalpies, entropies, or heat capacities [7–

10]. One of the major advantages of NMR for the study

of internal dynamics, the ability to resolve individual

residues, is currently extended from the routine appli-

cation to 15N–1H moieties to relaxation measurements

of various atom groups of the side chains, in particular
methyl groups [11–13]. Usually, the basic experiment is a

two-dimensional spectrum, e.g., a 15N HSQC, and peak

intensities are followed in a series of such experiments

where a relaxation period is varied. Accuracy of the
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intensity measurements is often a limiting factor for the

interpretation of the data in terms of dynamics. With

larger proteins or with the use of CHn moieties, overlap

becomes an increasing problem [14]. Here we show that

three-way decomposition [15] can provide an improve-

ment in accuracy, in particular when considering over-
lapped peaks. A systematic analysis of the 370-residue

long protein MBP (maltose binding protein [16]) was

performed both by three-way decomposition (TWD) as

implemented in the software MUNIN [17] and by a

conventional procedure that is based on extracting the

maximal intensity for each peak in each spectrum.

The fundamental model assumption of TWD is best

described by the following expression:
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A 3D data set (e.g., a 3D spectrum or a set of 2D

spectra) with data points Sijk is to be optimally modeled

by a sum of M components, i.e., the components should

be determined such that the difference between the
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Fig. 1. Comparison of T1 value evaluation from isolated peaks by

MUNIN and a conventional method. Main panel: histograms of the

distributions of relative errors in T1 values of 296 isolated peaks. Re-

sults are shown for the conventional method (thin lines) and MUNIN

(thick lines) applied to the data processed with linear prediction

(dashed lines) and without it (solid lines). The relative error size is on

the horizontal axis. Inset: example of relaxation profiles from the two

methods. For this peak, a large error reduction from 9 to 5% of the T1
value from the conventional method from the avoidance of linear

prediction. Line styles are the same as in the main panel (note that the

two thick lines almost coincide). The curves are scaled to set their

maxima equal to unity. The input data comes from a 15N T1 relaxation
data set consisting of seven spectra with 576� 280 complex points each

and relaxation times between 10.1 and 1211.5ms. The data were re-

corded on a 600MHz Varian Inova system at the University of To-

ronto. The spectra were processed by the Nmrpipe software [24] with

or without doubling of the 15N dimension by linear prediction, yielding

Fourier transformed planes with 2048� 1024 real points. The locations

of peak maxima were restricted to small rectangles with a typical size

of 8 data points (0.059 ppm) in the 1HN and 10 points (0.26 ppm) in the
15N dimension. For non-overlapped peaks the same rectangles were

also used to define the input for MUNIN. Least squares fits of single

exponents, using a routine from the DASHA package [30], were ap-

plied to the intensities determined by both the MUNIN-based and the

conventional approach, yielding relaxation times and their errors. The

uncertainties in T1 values were in all cases carefully estimated by 500

simulation runs of the Monte Carlo method [25] implemented in the

above package.
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experimental spectrum and the sum of components
becomes minimal [17]. Each component m ðm ¼
1; 2; . . . ;MÞ is a 3D entity that approximates a subset of

the signals in the spectrum. It is in turn described by an

amplitude am and a direct product of 3 one-dimensional

vectors F 1m, F 2m, and F 3m. The one-dimensional vec-

tors are referred to as shapes, and they resemble spectral

cross-sections. The last sum in the above expression

describes regularization according to Tikhonov [18]. By
minimizing also the sum of squares of amplitudes am,
one prevents that some components become much larger

than others. The major benefits are faster convergence

and avoidance of solutions with very similar compo-

nents. Its weighting factor k is called regularization

parameter and, as shown previously [19], a value be-

tween 0.001 and 0.01 improves the convergence signifi-

cantly. MUNIN, an implementation of TWD for NMR
purposes, takes a spectrum S and an estimate M for the

number of components as input and determines the

amplitudes am and the vectors F 1m, F 2m, and F 3m such

that the above expression becomes minimal. It has been

introduced earlier for the analysis of various types of

NMR data sets, and both the model and the optimiza-

tion algorithm have been discussed [17–22]. The princi-

pal feasibility of the algorithm for extracting relaxation
parameters from a set of 15N HSQCs was previously

demonstrated on a few residues of azurin [23]. Here, we

show the practical applicability, performance, and ro-

bustness of the method by systematically analyzing a

large protein with 370 residues, maltose binding protein

(MBP), using data recorded in another lab and not with

TWD in mind. Ease of use is also increased by a new

program version with a graphical user interface, re-
quiring merely spectra in Nmrpipe format [24] and a

peak list.
2. Results and discussion

The 370 residues of MBP include 21 prolines and 8

residues including the N-terminus with unassigned
backbone amide groups. Of the 341 assigned peaks, 296

were isolated in the spectrum, while 21 peak pairs ex-

hibited significant overlap; there was also a group of 3

overlapped peaks. We considered two peaks being

overlapped if the chemical shift difference was smaller

than 0.04 ppm in the 1HN and 0.1 ppm in the 15N di-

mension (see the caption to Fig. 1 for details of spectra

acquisition and processing).
In a first step all 296 isolated and assigned peaks in

the first spectrum were identified, and each peak was

surrounded by a rectangle. This step is required for both

MUNIN and a conventional approach used for com-

parison, which is based on the evaluation of the maxi-

mum of a peak in each spectrum (see the caption to

Fig. 1 for details of the approaches). All seven spectra
were then submitted together with the definitions of

rectangular regions to both methods. A comparison of

the two results shows primarily that the obtained T1
values from MUNIN and the conventional method are

consistent. For 286 of the 296 residues with isolated

peaks in the 15N HSQC the difference between the T1
values from the two methods is smaller than the sum of

the two corresponding errors. However, some of the

remaining 10 cases exhibited significant differences as

well as sizeable sums of errors. The source of these in-

consistencies is indicated by looking at the distribution

of error sizes among all 296 residues obtained from the

two methods. Fig. 1 (main panel) plots the number of

occurrences of errors versus their relative sizes (since all
T1 values are of similar order, the use of absolute errors

would yield a similar distribution). The distribution of

errors obtained by MUNIN (thick dashed line) is clearly

shifted to smaller error values when compared to the

corresponding curve for the conventional method (thin

dashed line). This can be statistically proven by the
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one-sided Kolmogorov–Smirnov test [25] implemented
in MATLAB (The MathWorks). This test addresses the

question whether two data sets, with elements that do

not adopt predefined discrete values, are drawn from the

same or from different (unknown) distributions. In our

case it indicates different distributions at a significance

level of more than 99%. Visual inspection of a number

of cases with sizably larger errors from the conventional

method revealed unwanted artifacts that are caused by
the spectral processing. The inset of Fig. 1 displays for a

selected peak (residue 62) the normalized intensities re-

sulting from MUNIN and the conventional approach

(thick and thin dashed lines, respectively). Clearly, the

intensities from the latter method, in particular for the

third spectrum, do not fall on a single exponential curve.

It is known that such artifacts, which did not show up

in a consistent way but rather affected only a few peaks
in only a few spectra, could be caused by the use of
Table 1

Overlapped peaks with significant separation of the T1 values

Residue dNa dHa T1 (M)b

4d 123.2 8.41 806� 31

350d 123.3 8.39 1450� 37

269 118.8 8.09 1493� 37

328 118.8 8.06 1314� 32

11 122.9 8.66 1269� 42

168 122.9 8.62 1432� 20

46 120.9 8.05 1336� 24

363 120.8 8.05 1463� 47

27 120.9 7.96 1497� 35

367 121.0 7.93 1385� 29

283 117.1 7.07 1305� 58

310 117.2 7.07 1501� 89

95d 115.6 7.36 1337� 17

297d 115.5 7.36 1530� 57

280 120.7 8.21 1372� 28

303 120.7 8.18 1188� 70

55 119.9 7.45 1177� 19

195 120.0 7.42 1357� 39

151 124.9 7.24 1433� 37

338 124.9 7.22 1324� 57

357 122.1 8.61 1379� 43

360 122.2 8.62 1480� 25

a Shifts from an independent assignment, in ppm.
b T1 values and their fitting errors obtained from MUNIN (M) and a con
cDifference between T1 values in each pair for the two approaches, in m
dExamples for these pairs are presented in Figs. 2 and 3, respectively.
linear prediction [26,27]. Indeed, reprocessing the spec-
tra without linear prediction and subsequent analysis by

the conventional method significantly improved the re-

sult (thin solid line in Fig. 1, both panels) so that the

distribution became more similar to the one from MU-

NIN. Analysis of the newly processed data by MUNIN

yielded little change with respect to the original data

(thick solid lines). Still, based on the Kolmogorov–

Smirnov test, the error distribution for MUNIN re-
mained better than for the conventional method on a

95% significance level. The 10 inconsistencies mentioned

above, with differences of the T1 values between the two

methods exceeding the sum of errors, all disappeared

when linear prediction was omitted. This was due to new

T1 values from the conventional method differing by up

to three times the fitting error, while the new T1 values

from MUNIN changed only by a fraction of the fitting
error. Changes of the results from the conventional
T1 (C)b DT1 (M)c DT1 (C)c

908� 31 644 170

1078� 33

9=
;

1455� 43 179 113

1342� 29

9=
;

1275� 33 163 105

1380� 23

9=
;

1323� 29 127 100

1423� 15

9=
;

1473� 37 112 92

1381� 22

9=
;

1385� 8 196 35

1420� 31

9=
;

1403� 32 193 37

1440� 43

9=
;

1313� 30 184 64

1249� 51

9=
;

1219� 15 180 32

1251� 18

9=
;

1399� 18 109 31

1368� 28

9=
;

1392� 31 101 46

1438� 7

9=
;

ventional procedure (C), in ms.

s.
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method gave rise to two new situations where the dif-
ference between the two methods exceeds the sum of

errors, but both described low intensity shoulders of

other strong peaks. Due to the results shown in Fig. 1,

we decided to abandon our initial ambition to use the

processed spectra exactly as they were provided to us,

and rely for the remaining analysis exclusively on the

spectra processed without linear prediction. The present

analysis is not meant to address (well-known) questions
about linear prediction [26,27], but we note that MU-

NIN proves to be more robust with respect to artifacts

found in NMR spectra.

The next step involved the analysis of pairs of over-

lapped peaks. Two types of problems are expected in

this situation. Firstly, the position of the maximum of

each peak is falsified by the asymmetric contribution of

intensity from the second peak, making it difficult to
locate the measurement point by the conventional

method. Secondly, the contributions from the over-

lapped peaks modify the measured intensities, yielding

an averaging of the extracted peak intensities and thus

of the resulting T1 values. A straightforward calculation

shows that these effects are not negligible. For two

identical Lorentzian peaks separated by one line width

in each dimension, the maxima are shifted towards each
other by 20% of the line widths (along the 1H and 15N
Fig. 2. Example of MUNIN decomposition of overlapped peaks correspond

frequency dimensions resulting from MUNIN decomposition; solid and dash

are arbitrary, and all shapes are multiplied by the square root of the compo

(thick lines) and the conventional method (thin lines). Dashed and solid lines c

set their maxima equal to unity. (C) Contour plot of the peaks in the first HSQ

and the dashed ones indicate the regions submitted to the conventional proc

assignment.
dimensions), and the contributions from the neighbor-
ing peaks reach 20% of the total intensity at the original

and almost 30% at the new positions of the maxima.

Since the latter effect causes the observed T1 values in the

pair to become more similar, we consider the size of the

difference of T1 values calculated for the two peaks of an

overlapped pair an indication of the quality of the result.

Our experience with TWD shows that the method

hardly alters the difference in T1 values, and in particular
it does not increase it artificially.

Analysis of the 21 pairs of overlapped peaks, either

by MUNIN using rectangles encompassing both peaks

of a pair or by the conventional approach treating the

peaks individually, yielded in 11 cases for at least one of

the methods significant differences of the T1 values (i.e.,

exceeding the sum of the corresponding errors). Table 1

shows that for all these pairs of residues MUNIN yiel-
ded a larger separation indicating more accurate values.

For about half of the pairs, a significant difference of T1
values is only obtained by TWD (lower half of Table 1).

Figs. 2 and 3 show two examples of decomposition of

pairs of overlapped peaks. For the pair of residues 4 and

350 (Fig. 2), a clean decomposition is obtained and a

large difference in T1 values is observed. The residue pair
95 and 297 (Fig. 3) represents a difficult case due to
strong overlap, a smaller difference in T1 values, which is
ing to residues 4 and 350 (first pair in Table 1). (A) and (D) Shapes in

ed lines correspond to peaks 4 and 350, respectively. The intensity units

nent amplitudes. (B) Peak relaxation profiles resulting from MUNIN

orrespond to the same peaks as in (A) and (D). The curves are scaled to

C-like plane; the solid rectangle shows the data submitted to MUNIN

edure; the crosses indicate the positions of the peaks according to the



Fig. 3. Example of MUNIN decomposition of overlapped peaks corresponding to peaks 95 and 297 (pair seven in Table 1). Panel arrangement, axes

and line types are analogous to Fig. 2. Solid lines in (A, B, and, D) correspond to residue 297 and dashed to residue 95.
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only observable by the MUNIN approach, and a poorer

fit to the anticipated exponential curve, mainly caused

by the measurements at 696 and 1211ms. Nonetheless,

omitting measurements for any one delay time from the

fit of the MUNIN data still retains a difference in T1
values for the two components that exceeds their sum of

errors. For example, omitting the measurements for

1211ms yields a DT1 (M) of 122ms with a sum of errors
of 73ms. In both examples, the shapes describing the

frequency dimensions of the peaks (panels A and D) are

symmetric and ‘‘peak-like.’’ The relaxation profiles from

the conventional procedure are averaged compared to

the MUNIN results. Both the decomposition into peaks

with expected line-shapes and the higher separation of

the T1 values indicate the increased reliability of the

TWD approach. For three peaks of these two pairs, the
change in the T1 value when switching from the con-

ventional to the MUNIN approach exceeds the corre-

sponding sum of errors; the exception is peak 297 due to

relatively large errors (Table 1). The higher reliability

when using TWD for the peak pairs of Table 1 increases

also the confidence of those pairs of overlapped peaks

where no difference in relaxation times could be deter-

mined. Summarizing, the MUNIN analysis of over-
lapped peak pairs may provide up to 42 additional

probes for the characterization of backbone relaxation

in MBP.

We also analyzed the remaining group of three

overlapped peaks. It is however difficult to draw any

conclusions from this result, as two of the three peaks

overlapped exactly according to the assignment. De-
composition of the data into three components yielded

reasonable and plausible shapes in the two frequency

dimensions. However, the resulting T1 values were sim-

ilar within the corresponding errors. Using only two

components for decomposition also provided undis-

torted shapes. Such a situation may be explained if two

peaks are strongly overlapped and have very similar T1
values, so that TWD may successfully describe the in-
tensities by using only one component for both peaks.

Information about the presence of a third peak thus has

to come from other sources, e.g., the assignment. Irre-

spective of whether two or three components were

proposed to MUNIN, the calculations provided

peak definitions with regular shapes and a common re-

laxation time.

Use of Tikhonov regularization [18] was necessary
when decomposing overlapped peaks because the vari-

ation among the different relaxation times was seldom

more than 30% of a typical T1 value. Such similarity,

combined with a significant overlap in the frequency

dimensions, may easily cause poor convergence. For

some examples of Table 1, the use of a conventional

approach based simply on intensity measurements may

not be appropriate and one may instead consider the use
of more sophisticated fitting routines, such as the

‘‘nlinLS’’ routine in Nmrpipe [24]. In contrast to MU-

NIN, these routines require as an input ‘‘estimates for

all model parameters such as peak positions and line

width’’ (Nmrpipe reference manual). Moreover, they

demand the choice of a line shape model such as

Gaussian or Lorentzian lines, which is known to be
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problematic for decomposition of spectral regions
[28,29]. Due to the number of parameter estimations

requested it was not feasible to perform an objective

comparison between such routines and MUNIN.

A new version of MUNIN, equipped with a graphical

user interface, was designed for the analysis of relaxa-

tion data (available from the authors). It merely requires

an input of processed spectra and a peak list. Rectangles

defining the extensions of the peaks may be added to the
peak list, but they can also be created in a semi-auto-

mated way while analyzing overlap situations interac-

tively within the program.
3. Conclusion

The present systematic study, performed on a stan-

dard data set for a large protein, indicates that TWD

extracts relaxation data from a set of HSQC-like spectra

more reliably than other routinely used tools. Although

the above observations with regard to linear prediction

do not represent a systematic analysis of the influence of

spectral artifacts, they do indicate that TWD presents a

more robust method for the evaluation of relaxation
data. A likely explanation is the necessity for TWD to

describe corresponding peaks in all spectra by a single

shape for each of the two dimensions. However, in the

context of relaxation data, the major advantage of TWD

is its ability to decompose overlapped signals without

additional assumptions on line shapes or peak positions,

and thus to significantly increase the number of acces-

sible relaxation probes. It appears advisable to use in-
terleaved recording of the set of spectra to minimize the

effect of instrument or temperature instability and thus

provide data that more closely fit the basic model as-

sumption of TWD; this mode of data acquisition was

however not used in the present application.
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